
NEPALI GIRL
TROJAN ANALYSIS

EST. 2019

#MADE SECURITY4

Top

250
Startup

category

27001:2013 Compliant company

CGN

C R Y P T O G E N N E P A L

This report is based on an analysis conducted in a controlled environment and should
not be replicated in a real-world setting. The information contained in this report is for

educational purposes only and should not be interpreted as concrete
recommendations for any specific action. Any attempt to replicate the results

described in this report is done at the user's own risk.

Disclaimer

The analysis of the Trojan app was carried out by Nirmal Dahal and Niraj Kharel,
with support from Yojan Dhakal, Pradip Bhattarai, Bhuwan Bhetwal, Bibek
Dhungana, Aayush Shrestha, Aayushman Thapa Magar, and Anjil Sharma.

RESEARCH

TEAM

Nepali Girl is an android trojan that has been spreading in Nepal for over a month through the

WhatsApp messaging platform. This sophisticated piece of Trojan is designed to steal sensitive

information from the mobile devices of its victims, compromising their privacy and security. The

primary method of delivery for this trojan is through the popular messaging platform WhatsApp,

where it is distributed by sending a message that contains a malicious link or app directly.

Once installed, the trojan app can trick the victim to gain access to sensitive permissions by

displaying fake accessibility pages. Once the user provides permission on accessibility, this trojan

can automatically grant itself permissions like read SMS, call, account, camera, contacts,

microphone, storage can also be used to perform other actions or capabilities, such as

downloading additional malicious applications or displaying unwanted contents, having network

access, setting wallpaper, install shortcuts and much more.

"Android Trojans are silent predators, infiltrating your device
without you even realizing it, and compromising the security of
your sensitive data."

Background

The images below are related to the detection and spread of the Nepali Girl Trojan and

were collected from a variety of sources about a month ago.2022

The app is often distributed through WhatsApp, through a message or link sent by an infected

individual or group. Once the recipient downloads and installs the app, it gains access to the

device and requests various permissions, including accessibility. The user unwittingly grants all

permissions, allowing the app to add itself to the device's startup process and carry out its

malicious functions.

The app harvests sensitive information such as phone call logs, contacts, microphone recordings,

location data, and storage information. The harvested information is transmitted back to the

attacker and stored in an SQLite database, with the app specifically targeting credentials such as

those for Facebook and Google accounts. The app also schedules different attacks and drops

additional malware onto the device, further compromising its security.

“The following flow chart provides an in-depth look into the
spread of the Nepali Girl Trojan and the attack flow utilized by the
attacker.”

Attack Scenario

Technical Details

We performed installation of the application within a sandboxed environment via different
mediums (e.g., ADB). Utilizing a package manager, we confirmed the successful installation of the
application. However, upon navigating to the application section on an android device, the app
was not visible as depicted in the following image.

Upon installation, the app is concealed within the device's application section, making the user
unaware of its continued presence.

Installation

The NEPALI GIRL Android application is designed with malicious functions, capable
of conducting phishing attacks and harvesting sensitive information. This trojan is
capable of compromising the security of a device and stealing sensitive
information such as cookies from logged in sessions. The package name of the
application is "com.appser.verapp" and the build type is "release"

About Nepali Girl App

We performed installation of the application within a sandboxed environment via different
mediums (e.g., ADB). Utilizing a package manager, we confirmed the successful installation of
the application. However, upon navigating to the application section on an android

device, the app was not visible as depicted in the following image.

The metadata for above service is defined in xml/accessibility file where it ha
 accessibilityFeedbackType="feedbackSpoken
 canRetrieveWindowContent="true
 canRequestTouchExplorationMode="true"

Accessibility Service in an android application uses a permission
android.permission.BIND_ACCESSIBILITY_SERVICE which allows an application to take control
over a device to perform some special tasks with the purpose of helping people with disabilities.
One way the service can be utilized is by providing accessibility for individuals with visual
impairments by reading text out loud. Additionally, the service can perform tasks and display
content on top of other apps, making it easier for people with disabilities to use their devices.
Accessibility permission also allows an application to read and respond to the user’s interaction.
With the accessibility permission, applications can also view the current state of the device,
current focus, selected text, and the contents of the window.

While the Accessibility Service can provide assistance to users with disabilities, it can also be
exploited by malicious actors to gain access to sensitive permissions. For example, the trojan
application ‘NEPALI GIRL’ uses this type of attack vector (Accessibility Service) to obtain additional
permissions on the infected device.

Abuse of Android's Built-in

Functionality

Which means with those attributes, the application can denote spoken feedbacks. The

canRetrieveWindowContent attribute is set to true which allows application to view the current

windows contents. Also, the attribute canRequestTouchExplorationMode allows applications to

perform touch actions on the screen on behalf of user with the command provided on spoken

feedback.

When the application is executed, a fake accessibility page of an android device is presented

which is built in html as shown in the image below.

Analysis

The above code snippet is part of an Android Accessibility Service, which is designed to assist

individuals with disabilities in navigating their device. The onAccessibilityEvent method is triggered

every time a relevant accessibility event takes place within the system. These methods likely

perform actions such as blocking the back button, sending the user to the home screen, or clicking

an element on the screen with a certain text. This code is utilized to call up the accessibility service

settings for the user, and it will prevent the user from returning or repeatedly prompt the user.

The application attempts to tempt users to click on Enable: ‘NEPALI GIRL’ in order to proceed further.

When a user clicks on that button, the legitimate accessibility page is opened that shows the

NEPALI GIRL application installed as a service.

When a user clicks on NEPALI GIRL under Accessibility’s downloaded services, it asks the user to

allow the accessibility service permission which can observe the actions, retrieve window content,

turn on explore by touch and perform gestures as shown below.

The absence of the application in the device's application menu denies user from launching it in a

normal manner. For a malicious app to be effective, it must be able to execute, but the Nepali Girl

application has been granted a capability to run on startup, allowing it to automatically launch

when the device restarts. Therefore, it is does not require any manual launches by users after

gaining the permissions on accessibility.

Once a user clicks on `OK’, the application crashes and it seems like the application does not exist

on the device. Also, the application automatically grants itself with permissions like camera,

contacts, location, microphone, phone, SMS, and storage.

AFTERBEFORE

We can also see varieties of capabilities granted to an application like changing the wallpaper,

installing and removing shortcuts, full network access and so on.

Also, the application contains multiple sandboxed processes running which might be collecting the

user interactions and data.

Additionally, this app contains permission to install other third-party application as well which
allows it to install additional trojans/ malwares as well.

The application also contains special permission to display its contents over any other
applications which a malicious actor can use to perform different phishing attacks.

When the application is opened, it displays a fake page that was created using HTML. However, the

HTML code was encoded using base64 within the application. We discovered the encoded data

and were able to decode it to reveal the fake HTML code.

With further drill downs into internal storage, we found that the application had created a
database under the directory /data/data/com.appser.verapp/app_webview/ to store different
critical information like credit card details, customer data, server addresses and much more.

It seems like the application gathers information from the infected device and saves it in a
database for later transmission.

Navigating into the internal and external storage created by the application, we
found different directories for cache, documents, files, preferences, and
databases.

File Storage

We came to the assumption that the application gathers information and stores it in a local internal
storage, such as a database. This was previously discussed in the aforementioned section. The stored
data is then transmitted at pre-determined intervals, denying the identification of network traffic as
soon as the application is installed on a device. This scheduled transmission of data would make it
impossible for the traffic to be spotted immediately after the installation of the application.

Different kind of job schedulers were also identified during the static code
analysis of the application that is used for scheduling background tasks. It seems
that the application collects and sends the user data at scheduled time periods.
Despite monitoring the application's network activity for an extended period, no
connections were detected, suggesting that the application may have the
capabilities to detect the monitoring tools or that data is only transferred on a
weekly basis or at longer intervals.

Scheduler

The code appears to perform the task of processing a log file in the external storage of a device,
replacing specific parts of the log file name, and then returning the entire content of the log file as a
string. This code could be utilized for the processing of log files for an app or system running on an
Android device.

Log Processing

The above code defines a method that schedules a JobService to run
periodically with a specified interval, depending on the Android version. The
JobService to be executed is defined by the WackMeUpJob class. If the Android
SDK version is equal to or greater than 24, the JobService will run every 900,000
milliseconds. If the Android SDK version is less than 24, the JobService will run
every 15,000 milliseconds.

The log file generated by the code contains data that has been encoded in the base64 format. By
examining the contents of the log file, it can be inferred that the purpose of the code is to keep track of
the activity performed by the application.

The purpose of this method is to write the input string to a log file. The log file is stored in the external
storage directory of the device and is created using the current date in the format "YYYY-MM-DD". The
method first checks if the directory exists, and if not, it creates the directory. If the log file does not exist,
it creates a new file with the date as part of its name. The input string is then converted to a base64
format and written to the log file.

Likewise, obfuscation is widely used in this application to hide the actual code content in the events
that anyone decompiles it or for the purpose of avoiding detection.

We need to replace every matched string with “” which provides us the actual data.

During the static code analysis of the application, we discovered that the
application is obfuscating the code. We were able to de-obfuscate the code
using Python replace function. As depicted in the following image, the code is de-
obfuscated which shows that the NEPALI GIRL drops another application under

/sdcard/Download/ directory named as ".update.apk".

Obfuscation

The following code also provides a login page where users can enter their login information. This is
done by launching a web page with a custom layout that closely resembles that of Facebook and
Google. This is like a traditional overlay attack, where a fake login page is presented to victims, tricking
them into providing their credentials. If the user does not provides valid credentials, it performs a
verification check to determine if either the "com.facebook.katana" or "com.facebook.lite" app
package has been installed on the device. If the "com.facebook.katana" app is found to be installed,
the code launches an “intent” to open the activity associated with that package. On the other hand, if
the "com.facebook.katana" app is not present but the "com.facebook.lite" app is installed, an “Intent”
is launched to start the activity linked to the "com.facebook.lite" package.

Example, the application is performing base64 encoding for a domain name and it replaces the
symbol * with /. Which results as

Upon de-obfuscating the entire source code, we discovered additional attack vectors
which can be exploited by the application for a phishing attack. We found the source
code that was used to display the login pages for Facebook, Facebook Page and
Google.

Phishing

The "Recovergmal" listener opens a link to the Google password recovery page, and the "revocerclick"
listener opens a link to the Facebook password recovery page. Additionally, both listeners seem to
write data to an unspecified object or location.

The application opens an activity, and we can see the google web page.

But we can see that the webpage is displayed inside an application.

We tried to trigger the activity which is responsible for displaying google account WebView.

Examining the application's internal storage after an activity was initiated, we discovered that the
database Cookies were populated.

Also, having a permission of , the application can easily steal the 2FA codes for social medias or
banking application if the two factor authentication is performed via SMS.

When user enters login details or any other information, the application stores its data on a local
storage. The application seems to transmit those data using the socket communication which is
described in this section.

The application also tends to steal the Google Authenticator 2FA codes by abusing

the Accessibility service. It checks if the device has the Google Authenticator app

running, and if it does, it retrieves the content of the interface and saves the

information locally or sends it through the socket interface.

The base64 encoded socket link was decoded, revealing that it utilizes a socket connection through
BOORCHAT-6969-36560.portmap.host on port 6000.

The application communicates to its server through socket. Java sockets serve as a
means of establishing network communication between applications on different
devices. They enable Android applications to connect and communicate with servers,
Android devices, or any other device that is capable of socket communication.

Data Transfer / Communication

The application can also access the device’s camera and can record videos enabling them to spy on
the victim.

Camera

It has been determined that the link provided by Portmap.io cannot be tracked
as the service is utilized for mapping public IP addresses and ports to private IP
addresses and ports behind a firewall. The intention of Portmap.io is to provide
access to servers and services running on a local network, thus tracking the link is
not a part of its offerings.

We have confirmed that the Android application "NEPALI GIRL" with the package name
"com.appser.verapp" is a malicious trojan designed to conduct phishing attacks and harvest
sensitive information. Considering this information, we identified investigation from Joe Sandbox for
the app with same package name to gather detailed information about the characteristics of the
app.

Our analysis showed that the app has similar malicious characteristics as those previously
identified but has seemingly undergone some mutations and is targeted specifically towards
Nepal. This further highlights the need for caution and security awareness when downloading and
installing applications, especially those from untrusted sources.

Joe Sandbox

VirusTotal

Multiple scanners including virus total has identified the application as trojan and several
leading security vendors such as BitDefender, Kaspersky, QuickHeal, Avira, Cyned, and
Sophos also flagged the application as a trojan containing spyware characteristics.

This indicates that the application is harmful to the device and its user, as trojans are
known to be malicious software designed to compromise the security of a device

and steal sensitive information.

Scanner Results

From Joesandbox Analysis

https://www.joesandbox.com/analysis/644605/0/html

https://www.joesandbox.com/analysis/644605/0/html

We also searched for the presence of the identified alphanumeric value in other malicious
applications. We found a similar application in Joesandbox, named "net.bitburst.pollpay.apk", which
was also deemed malicious by Joesandbox. It appears that the "NEPALI GIRL" application was built on
top of existing malicious application, as both have similar required permissions.

Upon downloading and decoding the contents of the file, we found a random value consisting of
alphanumeric characters.

Continuing our investigation, we discovered a file named "variations_seed_new" in the local storage
of the "com.appser.verapp" application located at "/data/user/0/com.appser.verapp/app_view/".
This file holds data encoded in base64 format.

Without any user interaction, it is not possible for such application to get installed
and obtain permissions automatically. Here are some steps to protect yourself from
this kind of application and a method for removing it, if a standard uninstall
methods is unsuccessful

 You can remove the application with ADB, Android Debug Bridge if regular
uninstallation

 does not work
 Connect to the device using USB
 Install ADB on your PC and enter below commands
 adb uninstall com.appser.verap

 Only download and install apps from trusted sources such as the Google Play
Store or Apple App Store (in case of Apple devices) and avoid downloading
apps from third-party app stores or websites as they may be compromised

 If the application needs to be downloaded from third-party stores, consider
scanning application on sites like virus total and other scanning platforms
before proceeding

 Be cautious of apps that ask for unnecessary permissions, particularly those
related to sensitive information such as contacts, text messages, or location
data

 Be suspicious of apps that offer free content or services, especially those that
promote adult or sexually explicit content

 Educate yourself and your employees about the common tactics used in
phishing attacks and how to identify them

 Despite of not having any unusual activities on a device, this type of application
could be present. Consider the presence of such application by navigating to
accessibility services of your settings.

Prevention

 Front Cover Trojan Horse Image Credit : v-graphix / Getty Image
 Report Created Using Figma

Credit

 https://www.virustotal.com/gui/home/uploa
 https://www.joesandbox.com/#window
 https://developer.android.com/reference/android/accessibilityservice/

AccessibilityServic
 https://ieeexplore.ieee.org/document/6987555

Reference

In conclusion, our analysis of the trojan android app NEPALI GIRL revealed that it is
designed to collect and store data on a local internal storage, such as a database.
This data is then transmitted at scheduled intervals. It was also observed that the
trojan app has phishing capabilities as well, which can trick the user to provide
sensitive information like login credentials, and other personal information.
Furthermore, it was found that the application misuses the accessibility service of
android devices to permit such sensitive permission itself which allows it to gain
access to sensitive information even without users’ knowledge.

Overall, this trojan app poses a significant threat to user privacy and security, and it
is recommended that users exercise caution when downloading and installing
apps from unknown sources. It is also important for organizations to implement
proper security measures to protect against such malicious apps and educate
their employees about such phishing techniques.

Conclusion

https://www.virustotal.com/gui/home/upload
https://www.joesandbox.com/#windows
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://ieeexplore.ieee.org/document/6987555

www.cryptogennepal.com

+977-1-4528928

whois@cryptogennepal.com

/cryptogennepal

 Security Operations Cente
 Information Security Audi
 SWIFT CSP Assessmen
 darkweb monitoring & brand protectio
 vulnerability managemen
 Penetration Testin
 Incident Respons
 Threat Analysi
 Server hardenin
 Cyber Security Consultan
 Information Security Training

OUR

SERVICES

Our services as information
security company includes:
Our services as information
security company includes:

https://cryptogennepal.com

